NIST: With Fuzzy Nanoparticles, Researchers Reveal Way to Design Tougher Ballistic Materials

Researchers at NIST examined the toughness of films composed of silica nanoparticles coated in polymer chains using Laser-Induced Projectile Impact Testing, or LIPIT. With LIPIT, they propelled tiny projectiles toward the films and used a camera and strobe light to capture their position every 100 nanoseconds. The amount that the projectiles slowed down after piercing the films revealed the material’s toughness. Courtesy/NIST

[ Editor’s note: I will admit that fuzzy nanoparticles gave me a nice feeling. What’s not to like about them? And then I read the whole article and came across this anthropomorphic description of the little guys.

“Mixing together plastics with some solid particles is like trying to mix oil and water. They want to separate,” said Sanat Kumar, a Columbia University professor of chemical engineering and co-author of the study. “The realization we’ve made in my group is: One way to fix that is to chemically tether the plastics to the particles. It’s like they hate each other but they can’t get away.”

It’s good to know what researchers are working on around the frontiers of science. I invite you to enjoy the whole article at the LA Daily Post… Erica P. Wissinger ]

Researchers at the National Institute of Standards and Technology (NIST) and Columbia Engineering have discovered a new method to improve the toughness of materials that could lead to stronger versions of body armor, bulletproof glass and other ballistic equipment.

In a study published today in Soft Matter, the team produced films composed of nanometer-scale ceramic particles decorated with polymer strands (resembling fuzzy orbs) and made them targets in miniature impact tests that showed off the material’s enhanced toughness. Further tests unveiled a unique property not shared by typical polymer-based materials that allowed the films to dissipate energy from impacts rapidly.

“Because this material doesn’t follow traditional concepts of toughening that you see in classical polymers, it opens up new ways to design materials for impact mitigation,” said NIST materials research engineer Edwin Chan, a co-author of the study.

The polymers that constitute most of the high-impact plastics today consist of linear chains of repeating synthetic molecules that either physically intertwine or form chemical bonds with each other, forming a highly entangled network. The same principle applies to most polymer composites, which are often strengthened or toughened by having some nonpolymer material mixed in. The films in the new study fall into this category but feature a unique design. …

“Based on this kind of platform, the grafted nanoparticle concept, you can start experimenting with more classic high-impact polymers such as the polycarbonates used in bulletproof windows,” Chan said. “There’s just so much to explore. We’re only just scratching the surface of these materials.”

Read more at Los Alamos Daily Post



Due to the nature of independent content, VT cannot guarantee content validity.
We ask you to Read Our Content Policy so a clear comprehension of VT's independent non-censored media is understood and given its proper place in the world of news, opinion and media.

All content is owned by author exclusively. Expressed opinions are NOT necessarily the views of VT, other authors, affiliates, advertisers, sponsors, partners or technicians. Some content may be satirical in nature. All images within are full responsibility of author and NOT VT.

About VT - Read Full Policy Notice - Comment Policy